各地中考
您现在的位置: 考试吧 > 2019中考 > 复习指导 > 中考数学 > 正文

2019年中考数学必考公式汇总

来源:考试吧 2019-04-28 14:14:30 要考试,上考试吧! 模拟考场
“2019年中考数学必考公式汇总”,更多2019年中考报名时间、2019中考时间等信息,请访问考试吧中考网或微信搜索“zhongkao566”获取。

  1 过两点有且只有一条直线

  2 两点之间线段最短

  3 同角或等角的补角相等

  4 同角或等角的余角相等

  5 过一点有且只有一条直线和已知直线垂直

  6 直线外一点与直线上各点连接的所有线段中,垂线段最短

  7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

  8 如果两条直线都和第三条直线平行,这两条直线也互相平行

  9 同位角相等,两直线平行

  10 内错角相等,两直线平行

  11 同旁内角互补,两直线平行

  12 两直线平行,同位角相等

  13 两直线平行,内错角相等

  14 两直线平行,同旁内角互补

  15 定理 三角形两边的和大于第三边

  16 推论 三角形两边的差小于第三边

  17 三角形内角和定理 三角形三个内角的和等于 180°

  18 推论 1 直角三角形的两个锐角互余

  19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和

  20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角

  21 全等三角形的对应边、对应角相等

  22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

  23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

  24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

  25 边边边公理(SSS) 有三边对应相等的两个三角形全等

  26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

  27 定理 1 在角的平分线上的点到这个角的两边的距离相等

  28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上

  29 角的平分线是到角的两边距离相等的所有点的集合

  30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

  31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边

  32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60°

  34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35 推论 1 三个角都相等的三角形是等边三角形

  36 推论 2 有一个角等于 60°的等腰三角形是等边三角形

  37 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半

  38 直角三角形斜边上的中线等于斜边上的一半

  39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

  40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  42 定理 1 关于某条直线对称的两个图形是全等形

  43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46 勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a^2+b^2=c^2

  47 勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形

  48 定理 四边形的内角和等于 360°

  49 四边形的外角和等于 360°

  50 多边形内角和定理 n 边形的内角的和等于(n-2)×180°

  51 推论 任意多边的外角和等于 360°

  52 平行四边形性质定理 1 平行四边形的对角相等

  53 平行四边形性质定理 2 平行四边形的对边相等

  54 推论 夹在两条平行线间的平行线段相等

  55 平行四边形性质定理 3 平行四边形的对角线互相平分

  56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形

  57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形

  58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形

  59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形

  60 矩形性质定理 1 矩形的四个角都是直角

  61 矩形性质定理 2 矩形的对角线相等

  62 矩形判定定理 1 有三个角是直角的四边形是矩形

  63 矩形判定定理 2 对角线相等的平行四边形是矩形

  64 菱形性质定理 1 菱形的四条边都相等

  65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

  66 菱形面积=对角线乘积的一半,即 S=(a×b)÷2

  67 菱形判定定理 1 四边都相等的四边形是菱形

  68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形

  69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等

  70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71 定理 1 关于中心对称的两个图形是全等的

  72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等

  75 等腰梯形的两条对角线相等

  76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

  77 对角线相等的梯形是等腰梯形

  78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰

  80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第 三边

  81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半

  82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

  83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc如果 ad=bc,那么 a:b=c:d

  84 (2)合比性质 如果 a/b=c/d,那么(a±b)/b=(c±d)/d

  85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

  87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形

  90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)

  92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)

  94 判定定理 3 三边对应成比例,两三角形相似(SSS)

  95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97 性质定理 2 相似三角形周长的比等于相似比

  98 性质定理 3 相似三角形面积的比等于相似比的平方

  99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

  于它的余角的正弦值

  100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

  于它的余角的正切值

  101 圆是定点的距离等于定长的点的集合

  102 圆的内部可以看作是圆心的距离小于半径的点的集合

  103 圆的外部可以看作是圆心的距离大于半径的点的集合

  104 同圆或等圆的半径相等

  105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

  径的圆

  106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

  平分线

  107 到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

  离相等的一条直线

  109 定理 不在同一直线上的三点确定一个圆。

  110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111 推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112 推论 2 圆的两条平行弦所夹的弧相等

  113 圆是以圆心为对称中心的中心对称图形

  114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

  相等,所对的弦的弦心距相等

  115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

  弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116 定理 一条弧所对的圆周角等于它所对的圆心角的一半

  117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118 推论 2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

  对的弦是直径

  119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

  的内对角

  121①直线 L 和⊙O 相交 d

  ②直线 L 和⊙O 相切 d=r

  ③直线 L 和⊙O 相离 d>r

  122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  123 切线的性质定理 圆的切线垂直于经过切点的半径

  124 推论 1 经过圆心且垂直于切线的直线必经过切点

  125 推论 2 经过切点且垂直于切线的直线必经过圆心

  126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

  圆心和这一点的连线平分两条切线的夹角

  127 圆的外切四边形的两组对边的和相等

  128 弦切角定理 弦切角等于它所夹的弧对的圆周角

  129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

  相等

  131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

  两条线段的比例中项

  132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

  线与圆交点的两条线段长的比例中项

  133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相

  等 134 如果两个圆相切,那么切点一定在连心线上

  135①两圆外离 d>R+r ②两圆外切 d=R+r

  ③两圆相交 R-rr)

  ④两圆内切 d=R-r(R>r) ⑤两圆内含 dr)

  136 定理 相交两圆的连心线垂直平分两圆的公共弦

  137 定理 把圆分成 n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正 n 边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形

  138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139 正 n 边形的每个内角都等于(n-2)×180°/n

  140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形

  141 正 n 边形的面积 Sn=pnrn/2 p 表示正 n 边形的周长

  142 正三角形面积√3a/4 a 表示边长

  143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为

  360°,因此 k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144 弧长计算公式:L=n 兀 R/180

  145 扇形面积公式:S 扇形=n 兀 R^2/360=LR/2

  146 内公切线长= d-(R-r) 外公切线长= d-(R+r)

  147 完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2

  148 平方差公式:(a+b)(a-b)=a^2-b^2实用工具:常用数学公式乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些数列前 n 项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)

  12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角

  圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

  圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

  弧长公式 l=a*r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r

  锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

  斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L 是侧棱长

  柱体体积公式 V=s*h 圆柱体 V=pi*r2h

扫描/长按二维码帮助中考通关!
获取2019中考报名时间
获取2019中考作文
获取2套仿真内部资料
获取历年考试真题试卷

微信搜索"考试吧初高中" 关注获得中考秘籍

  相关推荐

  各地2019中考报名时间2019中考时间安排关注微信先报名

  2019中考报考指南中考报名方法中考报名条件

  2019中考大纲及解读2019中考政策历年真题及答案

0
收藏该文章
  • 语文知识地图课程
  • 考试吧新东方网校

基础课程——系统学习,扎实基础

课程名称 详情 课时 优惠价 试听 购买
中学语文知识地图第一册(高分技巧班)
30 1,800
中学语文知识地图第二册(实操班) 30 1,800
内容详情:
第一章:成长经历类文章与阅读分析
第二章:亲情友情类文章与阅读分析
第三章:话题议论类文章与阅读分析
第四章:概括能力题型与思维训练
第五章:表述能力题型与答题结构训练
第六章:理解能力题型与虚实相应法应用
第七章:古诗文赏析题型与要点分析
第八章:文言文题型与学习要点分析
第九章:判定分析题型答题结构与要点分析
第十章:记叙文考点与题型梳理
第十一章:议论文考点与题型梳理
第十二章:说明文考点与题型梳理
第十三章:判定分析性赏析题型答题要点
第十四章:思想情感分析题型与虚实相应
第十五章:学期课程融汇与升华
课程特色:
以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型 ,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员
现代文阅读答题技巧掌握不够全面,想稳固提高的初中生

赠送
《中学语文知识地图—中学文言文必考140字》
中学语文知识地图第三册(能力强化班) 30 1,800
内容详情:
第一章: 发现考点,发现知识地图
第二章: 古诗赏析与阅读
第三章:虚与实中的事实与情感变化
第四章:理解与表述能力题型分值与答题结构
第五章:综合运用与表述能力题
第六章:如何看题与做题
第七章:概括能力与说明文体
第八章:话题作文与议论文阅读
第九章:判定分析能力题答题分值分布
第十章:现代文赏析与表述能力训练
第十一章:考场作文中的虚与实分析
第十二章: 文学作品阅读与考场作文
第十三章: 考场试题整体讲解
第十四章: 考场试题整体讲解
第十五章:学期论文导引与写作
课程特色:
全面地检测与分析学生考试丢分的问题, 让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员
想夯实语文基础知识,成绩稳步提高的初中生

赠送
《学生优秀作品及点评指导(2.0版)》

专项训练课程——针对部分模块进行重点专项讲解,短期突破

课程名称 详情 课时 优惠价 试听 购买
中学考场作文训练营(现场版)
16 860
中学考场作文训练营(光盘版)
16 960
小学阅读训练营(适合5~7年级)现场版 16 499
内容详情:
第一章:小学阅读试题中的三种能力训练
第一节:小学阶段语文阅读考核的三种能力
第二节:小学阅读中的万题之本——概括能力题
第三节:小学阅读中的弱中之弱——表述能力题
第四节:小学阅读中的偏误之王——理解能力题
第二章:阅读方法、题型与答题方法技巧
第一节:记叙文题型与答题方法技巧
第二节:说明文题型与答题方法技巧
第三章:历年考试真题精选
第一节:记叙文专题
第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员
阅读能力迅速提升的5—7级学生

赠送
《语文阅读得高分策略与技巧》(小学版)
小学阅读训练营(适合5~7年级)光盘版 16 599
内容详情:
第一章:小学阅读试题中的三种能力训练
第一节:小学阶段语文阅读考核的三种能力
第二节:小学阅读中的万题之本——概括能力题
第三节:小学阅读中的弱中之弱——表述能力题
第四节:小学阅读中的偏误之王——理解能力题
第二章:阅读方法、题型与答题方法技巧
第一节:记叙文题型与答题方法技巧
第二节:说明文题型与答题方法技巧
第三章:历年考试真题精选
第一节:记叙文专题
第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员
阅读能力迅速提升的5—7级学生

赠送
《语文阅读得高分策略与技巧》(小学版)
黄保余作文训练营(适合3~6年级)现场版 16 499
内容详情:
第一讲:怎样将文章内容写具体;
第二讲:怎样让文章语言变生动;
第三讲:如何使文章有内容可写;
第四讲:使文章更精彩的几种表现手法;
第五讲:学会写好写人作文;
第六讲学会写好记事作文;
第七讲:如何选择与安排文章材料;
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员
写作不知如何下手而又急需快速突破的3—6级学生

赠送
《原创作文·专题突破》
黄保余作文训练营(适合3~6年级)光盘版 16 599
内容详情:
第一讲:怎样将文章内容写具体;
第二讲:怎样让文章语言变生动;
第三讲:如何使文章有内容可写;
第四讲:使文章更精彩的几种表现手法;
第五讲:学会写好写人作文;
第六讲学会写好记事作文;
第七讲:如何选择与安排文章材料;
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员
写作不知如何下手而又急需快速突破的3—6级学生

赠送
《原创作文·专题突破》

冲刺提高课程——直击考试,快速提分

课程名称 详情 课时 优惠价 试听 购买
中考语文考前梳理班(现场版)
20 980
中考语文考前梳理班(光盘版)
20 980
12 860
0
收藏该文章
文章责编:liujiaqi  
看了本文的网友还看了
·2019年中考物理复习之弹力  (2019-04-29 14:14:46)
·2019年中考物理复习之重力  (2019-04-29 14:13:56)
·2019年中考物理复习之牛顿第一定律  (2019-04-29 14:12:57)
·2019年中考物理复习之惯性  (2019-04-29 14:11:14)
·2019年中考物理复习之滑动摩擦力  (2019-04-29 11:34:50)
·2019年中考物理复习之压力  (2019-04-29 11:32:37)
文章搜索
中国最优秀中考名师都在这里!
尹嵩山老师
在线名师:尹嵩山老师
   毕业于北京师范大学物理系,新东方特聘物理讲师,主讲初中九年级...[详细]
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
中考栏目导航
版权声明:如果中考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本中考网内容,请注明出处。
Copyright © 2004- 考试吧中考网 出版物经营许可证新出发京批字第直170033号 
中国科学院研究生院权威支持(北京)