各地中考
您现在的位置: 考试吧 > 2019中考 > 模拟试题 > 中考数学 > 正文

2019年北京市西城一模考试数学试卷

来源:考试吧 2019-04-24 17:10:14 要考试,上考试吧! 模拟考场
“2019年北京市西城一模考试数学试卷”,更多2019年中考报名时间、2019中考时间等信息,请访问考试吧中考网或微信搜索“zhongkao566”获取。

  一、选择题(本题共 30 分,每小题 3 分)

  1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数 9 608 000 人次,将 9 608 000 用科学记数法表示为

  (A) 9608 ´103 (B) 960.8 ´104

  (C) 96.08 ´105

  (D) 9.608 ´106

  2.在数轴上,实数 a,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是( )

  

  (A) a + b = 0

  (B) a - b = 0

  (C) a < b

  (D) ab>0

  3.如图,AB∥CD,DA⊥CE 于点 A.若∠EAB=55°,则∠D 的度数为( )

  

  (A)25°

  (B)35°

  (C)45°

  (D)55°

  4.右图是某几何体的三视图,该几何体是

  (A)三棱柱

  (B)长方体

  (C)圆锥

  (D)圆柱

  5.若正多边形的一个外角是 40°,则这个正多边形是

  (A)正七边形

  (C)正九边形

  (B)正八边形

  (D)正十边形

  6.用配方法解一元二次方程 x - 6 x - 5 = 0 ,此方程可化为

  (A)( x - 3)2= 4

  (B)( x - 3)2= 14

  (C)( x - 9)2= 4

  (D)( x - 9)2= 14

  7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为 2m,旗杆底部与平面镜的水平距离为 16m.若小明的眼睛与地面距离为 1.5m,则旗杆的高度为(单位:m)

  

  (A) (B)9 (C)12 (D)

  8.某商店举行促销活动,其促销的方式是“消费超过 100 元时,所购买的商品按原价打 8折后,再减少 20 元” .若某商品的原价为 x 元(x>100),则购买该商品实际付款的金额(单位:元)是

  (A) 80%x - 20 (B) 80% ( x - 20)

  (C) 20%x - 20 (D) 20% ( x - 20)

  9.某校合唱团有 30 名成员,下表是合唱团成员的年龄分布统计表:对于不同的 x,下列关于年龄的统计量不会发生改变的是

  (A)平均数、中位数

  (C)众数、中位数

  (B)平均数、方差

  (D)众数、方差

  10.汽车的“燃油效率”是指汽车每消耗 1 升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗 1 升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗 1 升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,

  正确的是

  (A)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

  (B)以低于 80km/h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少

  (C)以高于 80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油

  (D)以 80km/h 的速度行驶时,行驶 100 公里,甲车消耗的汽油量约为 10 升

  二、填空题(本题共 18 分,每小题 3 分)

  11.分解因式:ax2 - 2ax+a=________.

  12.若函数的图像经过点 A(1,2),点 B(2,1),写出一个符合条件的函数表达式_________.

  13.下表记录了一名球员在罚球线上罚篮的结果:

  这名球员投篮一次,投中的概率约是

  14.如图,四边形 ABCD 是⊙O 内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD 的度

  数为_________________.

  第 14 题图

  第 15 题

  15.在平面直角坐标系 xOy 中,以原点 O 为旋转中心,将△AOB 顺时针旋转 90°得到

  △A'OB',其中点 A'与点 A 对应,点 B'与点 B 对应.若点 A( - 3,0),B( - 1, 2),

  则点 A'的坐标为_______________,点 B'的坐标为________________.

  16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.

  已知:如图 1,直线 l 和直线 l 外一点 P.

  求作:直线 l 的平行直线,使它经过点 P.

  作法:如图 2.

  (1) 过点 P 作直线 m 与直线 l 交于点 O;

  (2) 在直线 m 上取一点 A(OA

  长为半径画弧,与直线 l 交于点 B;

  (3) 以点 P 为圆心,OA 长为半径画弧,交直线 m 于点

  C,以点 C 为圆心,AB 长为半径画弧,两弧交于点

  

  所以直线 PD 就是所求作的平行线.

  请回答:该作图的依据是

  三、解答题(本题共 72 分,第 17-26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29

  题 8 分)解答应写出文字说明、演算步骤或证明过程.

  è 2 ø -1)0- 2sin60O + 3 - 2ïx + 72æ 1è y1 öx øx 2 - 2 xy + y 2x 2 y的值.

  20. 如图,在△ABC 中,BC 的垂直平分线交 BC 于点 D,交 AB 延长线于点 E,连接 CE.

  求证:∠BCE=∠A+∠ACB.

  21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研

  小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种

  种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并

  从这两块实验田中各随机抽取 20 个西瓜,分别称重后,将称重的结果记录如下:

  表 1

  表 2

  甲种种植技术种出的西瓜质量统计表

  乙种种植技术种出的西瓜质量统计表

  回答下列问题:

  (1)若将质量为 4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:

  (2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.

  

  

  

  22. 在平面直角坐标系 xOy,直线 y=x-1 与 y 轴交于点 A,与双曲线 y=kx交于点 B(m,2).

  (1)求点 B 的坐标及 k 的值;

  (2)将直线 AB 平移,使它与 x 轴交于点 C,与 y 轴交于点 D,若△ABC 的面积为 6,求直

  线 CD 的表达式.

  .如图,在23ABCD 中,对角线 BD 平分∠ABC,过点 A 作 AE//BD,交 CD 的延长线于点

  E,过点 E 作 EF⊥BC,交 BC 延长线于点 F.

  (1)求证:四边形 ABCD 是菱形;

  (2)若∠ABC=45°,BC=2,求 EF 的长.

  24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入 21 世纪

  以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.

  2007—2015 年全国汽车保有量及增速统计图

  根据以上信息,回答下列问题:

  (1)2016 年汽车保有量净增 2200 万辆,为历史最高水平,2016 年汽车的保有量为万辆,与 2015 年相比,2016 年的增长率约为%;

  (2)从 2008 年到 2015 年,

  (3)预估 2020 年我国汽车保有量将达到

  年全国汽车保有量增速最快;

  万辆,预估理由是

  25.如图,AB 为⊙O 的直径,C 为⊙O 上一点,过点 C 作⊙O 的切线,交 BA 的延长线交

  于点 D,过点 B 作 BE⊥BA,交 DC 延长线于点 E,连接 OE,交⊙O 于点 F,交 BC 于点 H,

  连接 AC.

  (1)求证:∠ECB=∠EBC;

  (2)连接 BF,CF,若 CF=6,sin∠FCB=求 AC 的长.

  26.阅读下列材料:

  某种型号的温控水箱的工作过程是:接通电源后,在初始温度 20℃ 下加热水箱中

  的水;当水温达到设定温度 80℃ 时,加热停止;此后水箱中的水温开始逐渐下降,当

  下降到 20℃ 时,再次自动加热水箱中的水至 80℃ 时,加热停止;当水箱中的水温下

  降到 20℃ 时,再次自动加热,……,按照以上方式不断循环.

  小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探

  究.发现水温 y 是时间 x 的函数,其中 y(单位:℃ )表示水箱中水的温度.x(单位:min)

  表示接通电源后的时间.

  下面是小明的探究过程,请补充完整:

  (1)下表记录了 32min 内 14 个时间点的温控水箱中水的温度 y 随时间 x 的变化情况

  m 的值为

  (2)①当 0≤x≤4 时,写出一个符合表中数据的函数解析式当 4

  ②如图,在平面直角坐标系 xOy 中,描出了上表中部分数据对应的点,根据描出的

  点,画出当 0≤x≤32 时,温度 y 随时间 x 变化的函数图象:

  (3) 如果水温 y 随时间 x 的变化规律不变,预测水温第 8 次达到 40℃时,距离接通电源 min.

  

  27.在平面直角坐标系 xOy 中,二次函数 y=mx2 - (2m + 1)x + m - 5 的图象与 x 轴有两个公

  共点.

  (1)求 m 的取值范围;

  (2)若 m 取满足条件的最小的整数,

  ①写出这个二次函数的解析式;

  ②当 n ≤ x ≤ 1 时,函数值 y 的取值范围是 - 6 ≤ y ≤ 4 - n,求 n 的值;

  ③将此二次函数平移,使平移后的图象经过原点 O.设平移后的图象对应的函数表达式为

  y=a(x - h)2 + k,当 x < 2 时,y 随 x 的增大而减小,求 k 的取值范围.

  .在28ABC 中,AB=BC,BD⊥AC 于点 D.

  (1)如图 1,当∠ABC=90°时,若 CE 平分∠ACB,交 AB 于点 E,交 BD 于点 F.

  ①求证:△BEF 是等腰三角形;

  ②求证:BD=12(BC + BF);

  (2)点 E 在 AB 边上,连接 CE.若 BD=12(BC + BE),在图 2 中补全图形,判断∠ACE 与

  ∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.

  29.在平面直角坐标系 xOy 中,若点 P 和点 P1 关于 y 轴对称,点 P1 和点 P2 关于直线 l 对称,

  则称点 P2 是点 P 关于 y 轴,直线 l 的二次对称点.

  (1)如图 1,点 A(-1 , 0).

  ①若点 B 是点 A 关于 y 轴,直线 l1: x=2 的二次对称点,则点 B 的坐标为

  ②若点 C(-5 , 0)是点 A 关于 y 轴,直线 l2:x=a 的二次对称点,则 a 的值为

  ③若点 D( 2 , 1)是点 A 关于 y 轴,直线 l3 的二次对称点,则直线 l3 的表达式

  为

  (2)如图 2,⊙O 的半径为 1.若⊙O 上存在点 M,使得点 M'是点 M 关于 y 轴,直线 l4:x=b的二次对称点,且点 M'在射线 y =33x(x ³ 0) 上,b 的取值范围是

  (3)E(t,0)是 x 轴上的动点,⊙E 的半径为 2,若⊙E 上存在点 N,使得点 N'是点 N关于 y 轴,直线 l5: y = 3x + 1的二次对称点,且点 N'在 y 轴上,求 t 的取值范围.

扫描/长按二维码帮助中考通关!
获取2019中考报名时间
获取2019中考模拟试题
获取2套仿真内部资料
获取历年考试真题试卷

微信搜索"考试吧初高中" 关注获得中考秘籍

  相关推荐

  各地2019中考报名时间2019中考时间安排关注微信先报名

  2019中考报考指南中考报名方法中考报名条件

  2019中考大纲及解读2019中考政策历年真题及答案

0
收藏该文章
  • 语文知识地图课程
  • 考试吧新东方网校

基础课程——系统学习,扎实基础

课程名称 详情 课时 优惠价 试听 购买
中学语文知识地图第一册(高分技巧班)
30 1,800
中学语文知识地图第二册(实操班) 30 1,800
内容详情:
第一章:成长经历类文章与阅读分析
第二章:亲情友情类文章与阅读分析
第三章:话题议论类文章与阅读分析
第四章:概括能力题型与思维训练
第五章:表述能力题型与答题结构训练
第六章:理解能力题型与虚实相应法应用
第七章:古诗文赏析题型与要点分析
第八章:文言文题型与学习要点分析
第九章:判定分析题型答题结构与要点分析
第十章:记叙文考点与题型梳理
第十一章:议论文考点与题型梳理
第十二章:说明文考点与题型梳理
第十三章:判定分析性赏析题型答题要点
第十四章:思想情感分析题型与虚实相应
第十五章:学期课程融汇与升华
课程特色:
以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型 ,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员
现代文阅读答题技巧掌握不够全面,想稳固提高的初中生

赠送
《中学语文知识地图—中学文言文必考140字》
中学语文知识地图第三册(能力强化班) 30 1,800
内容详情:
第一章: 发现考点,发现知识地图
第二章: 古诗赏析与阅读
第三章:虚与实中的事实与情感变化
第四章:理解与表述能力题型分值与答题结构
第五章:综合运用与表述能力题
第六章:如何看题与做题
第七章:概括能力与说明文体
第八章:话题作文与议论文阅读
第九章:判定分析能力题答题分值分布
第十章:现代文赏析与表述能力训练
第十一章:考场作文中的虚与实分析
第十二章: 文学作品阅读与考场作文
第十三章: 考场试题整体讲解
第十四章: 考场试题整体讲解
第十五章:学期论文导引与写作
课程特色:
全面地检测与分析学生考试丢分的问题, 让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员
想夯实语文基础知识,成绩稳步提高的初中生

赠送
《学生优秀作品及点评指导(2.0版)》

专项训练课程——针对部分模块进行重点专项讲解,短期突破

课程名称 详情 课时 优惠价 试听 购买
中学考场作文训练营(现场版)
16 860
中学考场作文训练营(光盘版)
16 960
小学阅读训练营(适合5~7年级)现场版 16 499
内容详情:
第一章:小学阅读试题中的三种能力训练
第一节:小学阶段语文阅读考核的三种能力
第二节:小学阅读中的万题之本——概括能力题
第三节:小学阅读中的弱中之弱——表述能力题
第四节:小学阅读中的偏误之王——理解能力题
第二章:阅读方法、题型与答题方法技巧
第一节:记叙文题型与答题方法技巧
第二节:说明文题型与答题方法技巧
第三章:历年考试真题精选
第一节:记叙文专题
第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员
阅读能力迅速提升的5—7级学生

赠送
《语文阅读得高分策略与技巧》(小学版)
小学阅读训练营(适合5~7年级)光盘版 16 599
内容详情:
第一章:小学阅读试题中的三种能力训练
第一节:小学阶段语文阅读考核的三种能力
第二节:小学阅读中的万题之本——概括能力题
第三节:小学阅读中的弱中之弱——表述能力题
第四节:小学阅读中的偏误之王——理解能力题
第二章:阅读方法、题型与答题方法技巧
第一节:记叙文题型与答题方法技巧
第二节:说明文题型与答题方法技巧
第三章:历年考试真题精选
第一节:记叙文专题
第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员
阅读能力迅速提升的5—7级学生

赠送
《语文阅读得高分策略与技巧》(小学版)
黄保余作文训练营(适合3~6年级)现场版 16 499
内容详情:
第一讲:怎样将文章内容写具体;
第二讲:怎样让文章语言变生动;
第三讲:如何使文章有内容可写;
第四讲:使文章更精彩的几种表现手法;
第五讲:学会写好写人作文;
第六讲学会写好记事作文;
第七讲:如何选择与安排文章材料;
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员
写作不知如何下手而又急需快速突破的3—6级学生

赠送
《原创作文·专题突破》
黄保余作文训练营(适合3~6年级)光盘版 16 599
内容详情:
第一讲:怎样将文章内容写具体;
第二讲:怎样让文章语言变生动;
第三讲:如何使文章有内容可写;
第四讲:使文章更精彩的几种表现手法;
第五讲:学会写好写人作文;
第六讲学会写好记事作文;
第七讲:如何选择与安排文章材料;
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。

适合学员
写作不知如何下手而又急需快速突破的3—6级学生

赠送
《原创作文·专题突破》

冲刺提高课程——直击考试,快速提分

课程名称 详情 课时 优惠价 试听 购买
中考语文考前梳理班(现场版)
20 980
中考语文考前梳理班(光盘版)
20 980
12 860
0
收藏该文章
文章搜索
中国最优秀中考名师都在这里!
尹嵩山老师
在线名师:尹嵩山老师
   毕业于北京师范大学物理系,新东方特聘物理讲师,主讲初中九年级...[详细]
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
中考栏目导航
版权声明:如果中考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本中考网内容,请注明出处。
Copyright © 2004- 考试吧中考网 出版物经营许可证新出发京批字第直170033号 
中国科学院研究生院权威支持(北京)