首页考试吧网校万题库直播雄鹰网校团购书城模考论坛实用文档作文大全宝宝起名
2016中考
法律硕士
2016高考
MBA考试
2016考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
高级经济师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
注册给排水
造价员考试
注册计量师
环保工程师
化工工程师
暖通工程师
咨询工程师
结构工程师
城市规划师
材料员考试
消防工程师
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
宝宝起名
缤纷校园
实用文档
入党申请
英语学习
思想汇报
作文大全
工作总结
求职招聘 论文下载 直播课堂
雅思考试
您现在的位置: 考试吧 > 雅思考试 > 历年真题 > 正文

2018年2月3日雅思阅读考试回忆及解析

来源:考试吧 2018-02-12 15:46:10 考试吧:中国教育培训第一门户 模拟考场
考试吧整理“2018年2月3日雅思阅读考试回忆及解析”,更多关于雅思考试真题,请访问考试吧雅思考试网。

  一、 考试概述:

  本次考试的文章两篇新题一篇旧题,第一篇是动植物介绍类,主要讲了食肉植物。第二篇是旧题,讲了不同文化背景下人们对事物认知的差异性。第三篇主要讲推动建筑课堂的实践。本次考试题型较简单,难度较大的段落大意没有出题,填空与判断仍然是重点题型。

  二、具体题目分析

  Passage 1:

  题目:Carnivorous Plants

  题型:填空题5 +判断题8

  新旧程度:新题

  文章大意:讲了包括Venus flytrap捕蝇草和pitcher plants猪笼草在内的这些食肉植物的特点及影响他们的因素。

  参考文章:

  Evolutionist Charles Darwin first marvelled at flesh-eating plants in the mid-19th century. Today, biologists, using 21st-century tools to study cells and DNA, are beginning to understand how these plants hunt, eat and digest - and how such bizarre adaptations arose in the first place.

  A

  The leaves of the Venus flytrap plant are covered in hairs. When an insect brushes against them, this triggers a tiny electric charge, which travels down tunnels in the leaf and opens up pores in the leaf’s cell membranes. Water surges from the cells on the inside of the leaf to those on the outside, causing the leaf to rapidly flip in shape from convex to concave, like a soft contact lens. As the leaves flip, they snap together, trapping the insect in their sharp-toothed jaws.

  B

  The bladderwort has an equally sophisticated way of setting its underwater trap.

  It pumps water out of tiny bag-like bladders, making a vacuum inside. When small creatures swim past, they bend the hairs on the bladder, causing a flap to open. The low pressure sucks water in, carrying the animal along with it. In one five-hundredth of a second, the door swings shut again. The Drosera sundew, meanwhile, has a thick, sweet liquid oozing from its leaves, which first attracts insects, then holds them fast before the leaves snap shut. Pitcher plants use yet another strategy, growing long tube-shaped leaves to imprison their prey. Raffles' pitcher plant, from the jungles of Borneo, produces nectar that both lures insects and forms a slick surface on which they can't get a grip. Insects that land on the rim of the pitcher slide on the liquid and tumble in.

  C

  Many carnivorous plants secrete enzymes to penetrate the hard exoskeleton of insects so they can absorb nutrients from inside their prey. But the purple pitcher plant, which lives in bogs and infertile sandy soils in North America, enlists other organisms to process its food. It is home to an intricate food web of mosquito larvae, midges and bacteria, many of which can survive only in this unique habitat. These animals shred the prey that fall into the pitcher, and the smaller organisms feed on the debris. Finally, the plant absorbs the nutrients released.

  D

  While such plants clearly thrive on being carnivorous, the benefits of eating flesh are not the ones you might expect. Carnivorous animals such as ourselves use the carbon in protein and the fat in meat to build muscles and store energy. Carnivorous plants instead draw nitrogen, phosphorus, and other critical nutrients from their prey in order to build light-harvesting enzymes. Eating animals, in other words, lets carnivorous plants do what all plants do: carry out photosynthesis, that is, grow by harnessing energy directly from the sun.

  E

  Carnivorous plants are, in fact, very inefficient at converting sunlight into tissue. This is because of all the energy they expend to make the equipment to catch animals - the enzymes, the pumps, and so on. A pitcher or a flytrap cannot carry out much photosynthesis because, unlike plants with ordinary leaves, they do not have flat solar panels that can grab lots of sunlight. There are, however, some special conditions in which the benefits of being carnivorous do outweigh the costs. The poor soil of bogs, for example, offers little nitrogen and phosphorus, so carnivorous plants enjoy an advantage over plants that obtain these nutrients by more conventional means. Bogs are also flooded with sunshine, so even an inefficient carnivorous plant can photosynthesise enough light to survive.

  F

  Evolution has repeatedly made this trade-off. By comparing the DNA of carnivorous plants with other species, scientists have found that they evolved independently on at least six separate occasions. Some carnivorous plants that look nearly identical turn out to be only distantly related. The two kinds of pitcher plants - the tropical genus Nepenthes and the North American Sarracenia - have, surprisingly, evolved from different ancestors, although both grow deep pitcher- shaped leaves and employ the same strategy for capturing prey.

  G

  In several cases, scientists can see how complex carnivorous plants evolved from simpler ones. Venus flytraps, for example, share an ancestor with Portuguese sundews, which only catch prey passively, via 'flypaper' glands on their stems. They share a more recent ancestor with Drosera sundews, which can also curl their leaves over their prey. Venus flytraps appear to have evolved an even more elaborate version of this kind of trap, complete with jaw-like leaves.

  H

  Unfortunately, the adaptations that enable carnivorous plants to thrive in marginal habitats also make them exquisitely sensitive. Agricultural run-off and pollution from power plants are adding extra nitrogen to many bogs in North America. Carnivorous plants are so finely tuned to low levels of nitrogen that this extra fertilizer is overloading their systems, and they eventually burn themselves out and die.

  I

  Humans also threaten carnivorous plants in other ways. The black market trade in exotic carnivorous plants is so vigorous now that botanists are keeping the location of some rare species a secret. But even if the poaching of carnivorous plants can be halted, they will continue to suffer from other assaults. In the pine savannah of North Carolina, the increasing suppression of fires is allowing other plants to grow too quickly and outcompete the flytraps in their native environment. Good news, perhaps, for flies. But a loss for all who, like Darwin, delight in the sheer inventiveness of evolution.

文章责编:wangpanpan  
看了本文的网友还看了
文章搜索
雅思考试栏目导航
版权声明:如果雅思考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本雅思考试网内容,请注明出处。